- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Nobahar, Masoud (2)
-
Alzeghoul, Omer (1)
-
Chakraborty, Avipriyo (1)
-
Chia, Henry Kini. (1)
-
Khan, Mohammad Sadik (1)
-
Khan, Sadik (1)
-
Shuman, Nur Mohammad (1)
-
Spears, Amber (1)
-
Worsley, Grant (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Shuman, Nur Mohammad; Nobahar, Masoud; Khan, Mohammad Sadik; Alzeghoul, Omer; Chia, Henry Kini. (, Geo-Congress 2022 GSP 336 268)With climate change frequency of extreme disasters is increasing day by day. Excessive rainfall causes shallow landslides during such extreme events, very commonly on highway slopes containing highly plastic clay. Mississippi results in a perfect area to study the Vetiver System (VS) performance for shallow slope failure under excessive rainfall, with an average annual rainfall intensity higher than other neighboring states in the south. A highway slope in Mississippi containing high-plastic clay is explored throughout the year 2019, where time-dependent slope movement along the depth is monitored with rainfall variation. A 9.1 m slope inclinometer along with a rain gauge and an air temperature sensor have been installed at that section. The slope has experienced a shallow movement at the slope surface with a depth of 1.9 m with already observed rainfall intensity. A 6 m2 area of the slope is selected and reinforced with Vetiver grass. Nevertheless, quantitative studies of how much contribution the VS provides to slope stabilization in the field are still relatively scarce. The current paper presents a comparative study of the VS performance on the shallow slope movement in expansive soil observed from inclinometer data for the last two years. It is observed that due to Vetiver grass, the slope movement rate has reduced to 2% since plantation of Vetiver grass from that of 10% before Vetiver grass. Later, this result is further verified through a numerical investigation where Vetiver grass is simulated by changing soil properties. Numerical analysis indicates root reinforcement from the root dimensions increases slope stability up to 30%. This study outlines an approach for the study of VS in terms of contribution to slope stabilization, including field observation and numerical analysis.more » « less
An official website of the United States government

Full Text Available